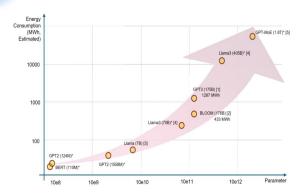
从分布式追踪 到任务级能耗治理

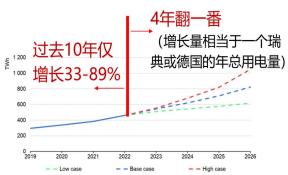
—— DeepFlow 在数据中心算电协同中应用的思考

王梓炫 南京邮电大学 博士后

CONTENTS

- 01 数据中心算电协同的背景与意义
- 02 算电协同的场景与挑战
- 03 基于 DeepFlow 的任务追踪与能耗分析
- 04 总结与展望





数据中心算电协同的背景和意义

数据中心已经成为能耗大户

(一) AI驱动算力需求爆发式增长

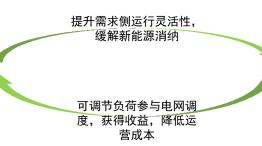
- 全球AI算力需求年均增长率达43%, 远超传统IT负载 (8%), 2030年 AI算力用电占比将超**50%** (Citi Research, 2024)。
- 我国智能算力规模占比已达**25.4%**,同比增长**45%**,预计2025年提升 至35%(中国信通院, 2024)。

(二) 数据中心能耗呈指数级攀升

- 大型AI模型训练能耗惊人: GPT-3训练耗电1287 MWh, 相当于<mark>120个</mark>家庭年用电量(Nature, 2024)。
- 全球数据中心总耗电量4年翻番,增量相当于**瑞典全国年用电量**(IEA, 2024)。
- 我国数据中心年耗电达1500亿 kWh, 占全社会用电量1.6%, 三年复合增长率超30%。

(三) 能耗成为发展的核心瓶颈

- 数据中心PUE居高不下(平均>1.5),电力成本占运营总成本56.7%。
- 高功耗密度引发电网风险:单一集群部署10万块H100 GPU(约150MW)
 可导致区域电网崩溃(OpenPipe, 2024)。
- "能源危机"已成为AI行业公认挑战(OpenAI, 2024)


算电协同的必要性

算力负荷的特殊性对电力系统构 成严峻挑战

- 高功率密度的特点
- 高可靠性与绿色性要求
- 强波动性与周期性

算电协同是应对算力能耗危机、实现电力系统与算力产业共赢发展的有效路径。

协同算力负荷助力新型电力系统 建设

- 算力负荷具备独特的时空灵活 性
- 协同优化可显著提升系统经济性与绿色性
- 赋能新型电力系统建设

算电协同的场景与挑战

算电协同的场景

三个方向

方向1

考虑各种内部节 能措施以减少能 耗,降低能耗成 本

实质上仍是在削减负荷,而不是 转移负荷

方向2

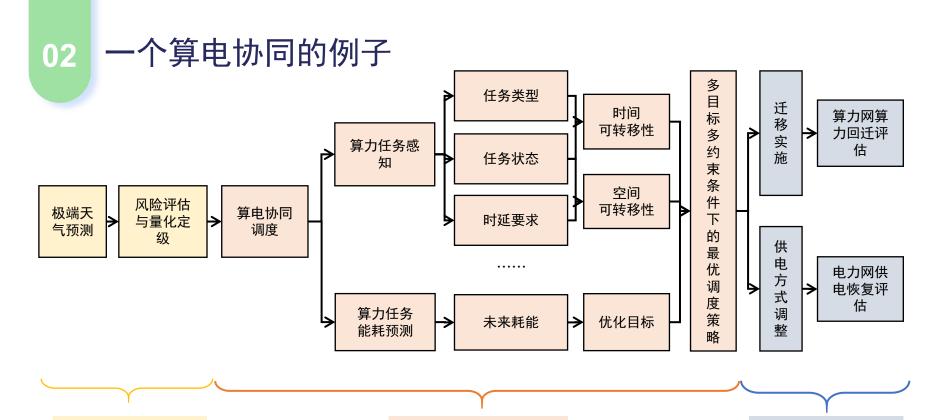
考虑空间分布, 利用电价在空间 上的差异转移算 力

以转移负荷为主, 但该行为可能对 电网造成影响

方向3

考虑算力转移对 电网的影响,针 对性地制定需求 响应策略

以转移负荷为主, 对数据中心需求 响应的引导更为 精准


两个挑战

负荷时空迁移能力量 化评估建模

多种约束下的联合优 化调度框架及方法

灾中防范 – 算电协同响应

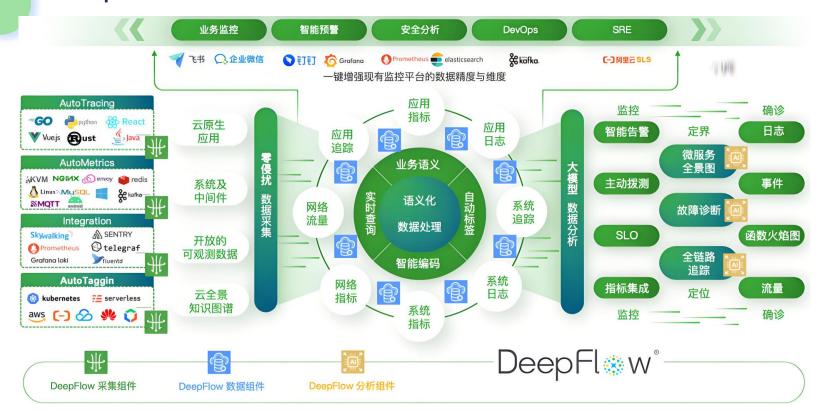
灾前预测 - 风险评估

灾后重建 -效率评估

算电协同挑战



来源:《算力电力协同:思路与探索》白皮书



基于DeepFlow的任务追踪 与能耗分析

DeepFlow的优势

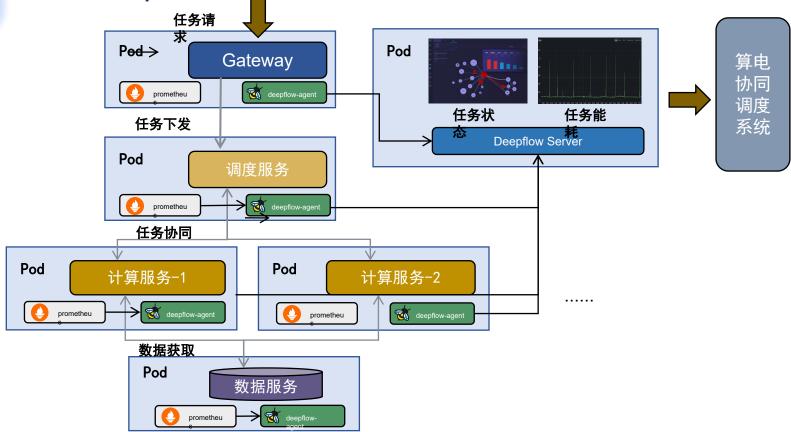
任意 Service 的全景图

来源: deepflow官网 https://deepflow.io/zh/

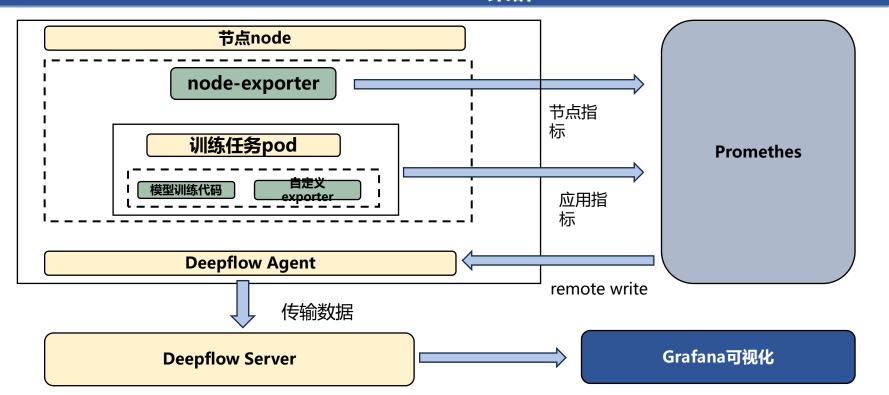
任意 Request 的分布式追踪

来源: deepflow官网 https://deepflow.io/zh/

任意 Function 的持续性能剖析


无缝集成流行的可观测性技术栈

基于 DeepFlow 的算电协同感知框架



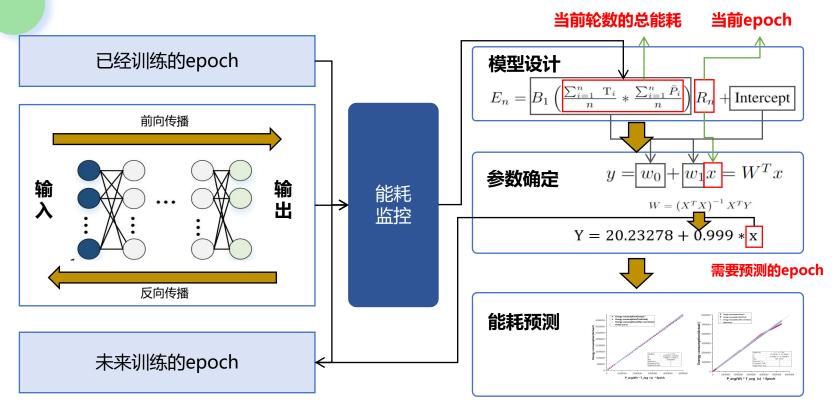
07 算电数据采集

Kubernetes集群

08 算电数据采集

remotewrite: 将数据长期写入到远端存储

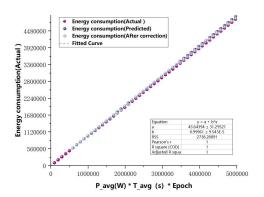
```
remoteWrite:
- url: http://172.31.15.216:38086/api/v1/prometheus
replicas: 1
resources:
 requests:
   memory: 400Mi
ruleNamespaceSelector: {}
ruleSelector: {}
scrapeInterval: 30s
securityContext:
 fsGroup: 2000
 runAsNonRoot: true
  runAsUser: 1000
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {} 自动选择所有ServiceMonitor
version: 3.4.0
```

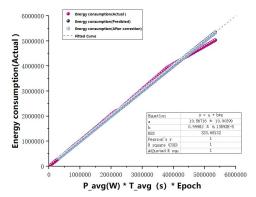

为自定义exporter配置ServiceMonitor及Service

```
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: carbon-exporter-monitor ServiceMonito
 namespace: monitoring
spec:
 selector:
    matchLabels:
     app: carbon-exporter 与Service的标签匹配
  endpoints:
  - port: metrics 与Service中定义的端口名称匹配
    interval: 30s
   path: /metrics
apiVersion: v1
kind: Service
metadata:
  name: carbon-exporter-service Service的名称
  namespace: monitoring
  labels:
    app: carbon-exporter
spec:
  selector:
    app: carbon-exporter
  ports:
  - name: metrics 与ServiceMonitor的
    port: 8000
    targetPort: 8000
```


能耗预测模型嵌入

Wang Z X, Lu J R, Wang P, et al. Two-Stage Energy Prediction With Prior Estimation and Dynamic Adaptation for Symbiotic IOV[J]. IEEE Internet of Things Journal, 2025.
技术创新系列Meetup


10 能耗预测模型嵌入

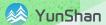

训练5轮预测未来50轮的能耗 误差小于0.6%

训练5轮预测	则未来100轮的能耗误	差小干6%
かいかいてせいしょうだい	バントント・ママイレ HJ ロレかし め	

がはないれば、大人の一人の一人の一人の一人の一人人			, 0.070	
Epoch	P_avg(W)	E_total (J)	Predict_E(J)	Error Rate(%)
1	115.2	96142.2		
2	118.6	195211.1		
3	123.1	294956.4		
4	123.9	396444.1		
5	120.8	495897.0		
6	114.5	595028.0	595018.0	0.00%
7	120.3	694643.5	694180.4	-0.07%
8	116.1	793277.9	793342.8	0.01%
9	117.9	893062.9	892505.2	-0.06%
10	109.8	986133.9	991667.6	0.56%
40	114.7	3889872.7	3921586.6	0.82%
41	110.0	3985943.3	4019625.2	0.85%
42	114.1	4082085.0	4165038.2	2.03%
43	118.0	4180969.9	4215702.3	0.83%
44	120.4	4282141.1	4313740.9	0.74%
45	122.3	4384080.0	4411779.5	0.63%
46	111.6	4477715.0	4509818.1	0.72%
47	117.4	4576519.2	4607856.7	0.68%
48	117.1	4673955.0	4705895.3	0.68%
49	117.6	4772043.5	4803933.9	0.67%
50	122.8	4873848.5	4901972.5	0.58%

训练5轮预测未来100轮的能耗误差小于6%						
6)	Epoch	P_avg (W)	E_total (J)	Predict_E(J)	Error Rate(%)	
	1	89.9	52924.4			
	2	90.0	107994.2			
	3	91.8	160854.0			
	4	92.1	214958.6			
6	5	90.6	267045.0			
6	6	93.5	320673.4	320451.9	-0.07%	
16	7	90.5	374701.5	373858.8	-0.22%	
6	8	91.7	428311.9	427265.7	-0.24%	
6	9	89.6	484595.8	480672.6	-0.81%	
	10	86.9	540640.4	534079.5	-1.21%	
6					•••	
6	90	103.3	4652520.9	4792619.1	3.01%	
6	91	104.0	4688657.1	4845870.3	3.35%	
6	92	107.2	4726145.1	4899121.5	3.66%	
6	93	103.4	4764768.5	4952372.7	3.94%	
6	94	106.6	4803873.7	5005623.9	4.20%	
6	95	105.0	4840285.0	5058875.1	4.52%	
6	96	108.1	4878188.1	5112126.3	4.80%	
6	97	100.6	4915567.3	5165377.5	5.08%	
6	98	105.5	4953535.4	5218628.7	5.35%	
6	99	105.4	4991947.6	5271879.9	5.61%	
-	100	106.5	5029581.4	5325131.1	5.88%	

Wang Z X, Lu J R, Wang P, et al. Two-Stage Energy Prediction With Prior Estimation and Dynamic Adaptation for Symbiotic IOV[J]. IEEE Internet of Things Journal, 2025.



04
总结与展望

01 总结与展望

目前,团队正致力于基于 DeepFlow 构建一套"零侵入的算力-能耗一体化可观测体系"。

未来我们计划从2个方向深化探索:

- 扩展至多云 / 异构算力中心。
- 结合 LLM 进行智能调度与根因分析

BONES: xx5
 BONES: xx5

THANKYOU

感谢观看

王梓炫 南京邮电大学

